Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет»

УТВЕРЖДАЮ

Декан факультета

Факультет нергетики и управления

<u>«Зо» Об</u> 2021 г. Гудим А.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Методы и средства решения прикладных задач в энергетике и электротехнике»

Направление подготовки	13.04.02 Электроэнергетика и электротехника		
Направленность (профиль) образовательной программы	Электропривод и автоматика		
Квалификация выпускника	Магистр		
Год начала подготовки (по учебному плану)	2021		
Форма обучения	Заочная форма		
Технология обучения	Традиционная		

 Курс	Семестр	Трудоемкость, з.е.			
2	4	5			

Вид промежуточной атте- стации	Обеспечивающее подразделение
Экзамен	Кафедра «Электропривод и автоматизация промышленных установок»

Разработчик рабочей программы:

Доцент, Доцент, Кандидат технических наук

Васильченко С.А

СОГЛАСОВАНО:

Заведующий кафедрой

Кафедра «Электропривод и автоматизация промышленных установок»

Черный С.П.

1 Введение

Рабочая программа и фонд оценочных средств дисциплины «Методы и средства решения прикладных задач в энергетике и электротехнике» составлены в соответствии с требованиями федерального государственного образовательного стандарта, утвержденного приказом Минобрнауки Российской Федерации № 147 от 28.02.2018, и основной профессиональной образовательной программы подготовки «Электропривод и автоматика» по направлению подготовки «13.04.02 Электроэнергетика и электротехника».

Практическая подготовка реализуется на основе: Профессиональный стандарт 40.180 «СПЕЦИАЛИСТ В ОБЛАСТИ ПРОЕКТИРОВАНИЯ СИСТЕМ ЭЛЕКТРОПРИ-ВОДА». Обобщенная трудовая функция: С. Разработка проекта системы электропривода

Задачи	Формирование навыков владения приемами и методами решения специ-
дисциплины	альных задач расчета параметров и режимов электротехнического и
	энергетического оборудования
Основные разделы / темы дисциплины	Методы определения электрических нагрузок и выбора электрооборудования электрических сетей. Методы определения потерь мощности, электрической энергии и напряжения в электрооборудовании электрических сетей. Методы анализа электромагнитных процессов в статических преобразовательных устройствах. Методика расчета мощности электрических преобразовательных устройствах.
	ческих двигателей, используемых в турбомеханизмах, и определение энергетической эффективности различных способов регулирования производительности турбомеханизмов. Методы расчета параметров и характеристик аварийных режимов электрооборудования электрических сетей. Современные аппаратно-программные (инструментальные) средства анализа режимов работы электрооборудования

2 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

Процесс изучения дисциплины «Методы и средства решения прикладных задач в энергетике и электротехнике» направлен на формирование следующих компетенций в соответствии с ФГОС ВО и основной образовательной программой (таблица 1):

Таблица 1 – Компетенции и индикаторы их достижения

Код и наименование компетенции	Индикаторы достижения	Планируемые результаты обучения по дисциплине
	Общепрофессиональные	
ОПК-1 Способен формулировать цели и задачи исследования, выявлять приоритеты решения задач, выбирать критерии оценки	ОПК-1.1 Знает методы выбора и создания критериев оценки исследований ОПК-1.2 Умеет формулировать цели и задачи исследования, определять последовательность решения задач	Знать методы выбора и создания критериев оценки исследований. Уметь формулировать цели и задачи исследования, определять последовательность решения задач.

ОПК-1.3 Владеет навыками выбора критериев принятия решения	Владеть навыками выбора критериев принятия решения.
решения	ния.

3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Методы и средства решения прикладных задач в энергетике и электротехнике» изучается на 2 курсе, 4 семестре.

Дисциплина входит в состав блока 1 «Дисциплины (модули)» и относится к базовой части.

Для освоения дисциплины необходимы знания, умения, навыки и / или опыт практической деятельности, сформированные в процессе изучения дисциплин / практик: «Теория и практика научных исследований», «Компьютерные, сетевые и информационные технологии».

Знания, умения и навыки, сформированные при изучении дисциплины «Методы и средства решения прикладных задач в энергетике и электротехнике», будут востребованы при изучении последующих дисциплин: «Учебная практика (ознакомительная практика)».

Дисциплина «Методы и средства решения прикладных задач в энергетике и электротехнике» частично реализуется в форме практической подготовки.

4 Объем дисциплины (модуля) в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость (объем) дисциплины составляет 5 з.е., 180 акад. час.

Распределение объема дисциплины (модуля) по видам учебных занятий представлено в таблице 2.

Таблица 2 – Объем дисциплины (модуля) по видам учебных занятий

Объем дисциплины	Всего академических часов
Общая трудоемкость дисциплины	180
Контактная аудиторная работа обучающихся с преподавателем (по видам учебных занятий), всего	14
В том числе:	
занятия лекционного типа (лекции и иные учебные занятия, предусматривающие преимущественную передачу учебной информации педагогическими работниками), в том числе в форме практической подготовки: 4	6
занятия семинарского типа (семинары, практические занятия, практикумы, лабораторные работы, коллоквиумы и иные аналогичные занятия), в том числе в форме практической подготовки: 2	8
Самостоятельная работа обучающихся и контактная работа, включающая групповые консультации, индивидуальную работу обучающихся с преподавателями (в том числе индивидуальные консульта-	158

ции); взаимодействие в электронной информационно-образовательной среде вуза	
Промежуточная аттестация обучающихся – Экзамен	8

5 Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебной работы

Таблица 3 – Структура и содержание дисциплины (модуля)

таолица 3 — Структура и содержание дисциплин	іы (модуля)			
	Виды уче	бной работы	і, включая с	амосто-
	ятельную	работу обуч	чающихся и	і трудо-
		емкость (н	в часах)	
	Контакти	ная работа пр	оеподава-	CPC
Наименование разделов, тем и содержание ма-	теля			
териала	Лекции	Семинар-	Лабора-	
		ские	торные	
		(практи-	занятия	
		ческие		
		занятия)		
Раздел 1 Методы определения электрически		и выбора э	лектрообор	рудова-
ния электричес	ских сетей			
Тема 1.1 Основные термины, определения и				
технические показатели электрооборудования,				
используемые в сетях электроснабжения				
используемые в сетях электроенаожения				
Основные термины, определения и техниче-				
ские показатели электрооборудования, ис-	2			
пользуемые в сетях электроснабжения	2			
, ,				
Тема 1.2 Понятие электрических нагрузок и их				
графиков, центры электрических нагрузок				
Понатие одектинаских настугах и их этафи				
Понятие электрических нагрузок и их графи-				8
ков, центры электрических нагрузок				0
Методики определения технических показа-				
телей электроприемников и методики расче-				
та параметров графиков электрических				8
нагрузок				
nucpyson				
Тема 1.3 Методы определения расчетных				
нагрузок				
Методики определения установившихся рас-				
четных нагрузок				8

	Виды учебной работы, включая самос ятельную работу обучающихся и труд емкость (в часах)			
	Контакти	ная работа пр		CPC
		тая расота пр с обучающи		CIC
Наименование разделов, тем и содержание ма-	Лекции			
териала	лекции	Семинар-	Лабора-	
		ские	торные	
		(практи-	занятия	
		ческие		
		занятия)		
Методики определения толчковых расчетных				0
нагрузок				8
Практическое залдание 1. Расчет нагрузок в				
электрических сетях		1		
Типовые расчеты в электрических сетях				
(часть 1)				15
Раздел 2 Методы определения потерь мощно	<u> </u> сти, элект	<u> </u>	ергии и на	пряже-
ния в электрооборудовани	и электрич	еских сетей		
Тема 2.1 Классификация потерь электрической				
энергии в электрооборудовании электрических				
сетей, схемы замещения элементов электриче-				
ских сетей, цели расчета потерь электрической				
энергии.				
Классификация потерь электрической энергии				
в электрооборудовании электрических сетей,				
схемы замещения элементов электрических	4*			
сетей, цели расчета потерь электрической	4.			
энергии.*				
энереши.				
Тема 2.2 Методы расчета условно-постоянных				
и нагрузочных потерь электрической энергии,				
методы расчета потерь мощности и потерь				
методы расчета потерь мощности и потерь				
Методы расчета условно-постоянных и				
нагрузочных потерь электрической энергии,				0
методы расчета потерь мощности и потерь				8
Методики продольного и поперечного регули-				
рования потерь напряжения в элементах				
				8
электрических сетей.				
	l		J.	

	Виды учебной работы, включая самосто-			
	ятельную работу обучающихся и			и трудо-
		емкость (н	в часах)	
	Контактная работа преподава-			CPC
Наименование разделов, тем и содержание ма-	теля с обучающимися			
териала	Лекции	Семинар-	Лабора-	
		ские	торные	
		(практи-	занятия	
		ческие		
		занятия)		
Практическое задание 2. Расчет потерь		,		
электрической энергии в системах электро-		1		
снабжения		1		
Cituosicciusi				
Раздел 3 Методы анализа электромагнитных	х процессо	в в статичес	ких преобр	разова-
тельных устр	-			-
Тема 3.1 Понятие переходных и квазиустано-				
вившихся процессов в устройствах преобразо-				
вательной техники. Методы анализа электро-				
магнитных процессов в статических преобра-				
зователях: метод припасовывания и метод				
_				
коммутационных функций.				
Понятие переходных и квазиустановившихся				
процессов в устройствах преобразовательной				
техники. Методы анализа электромагнитных				
_				8
процессов в статических преобразователях:				
метод припасовывания и метод коммутаци-				
онных функций.				
Тема 3.2 Основы моделирования преобразова-				
тельных устройств с использованием пакета				
программ MATLAB.				
Основы моделирования преобразовательных				
устройств с использованием пакета программ				8
MATLAB.				
Изучение компонентов пакета программ				
MATLAB				8
WAILAD				
Практическое задание 3. Методики расчета				
энергетических и динамических показателей				
статических и ойнамических показателей статических преобразователей энергии.*		2*		
статических преооризовителей энергий.				
	1	l	l	l

Раздел 4 Методика расчета мощности электрических двигателей, используемых в турбомеханизмах, и определение энергетической эффективности различных способов регулирования производительности турбомеханизмов

		бной работы работы	нающихся и	
Наименование разделов, тем и содержание материала		емкость (ная работа пр с обучающи Семинар- ские (практи- ческие занятия)	еподава-	CPC
Тема 4.1. Методика расчета мощности электродвигателей центробежных насосов и осевых вентиляторов				
Методика расчета мощности электродвига- телей центробежных насосов и осевых вен- тиляторов				8
Тема 4.2 Расчет показателей энергетической эффективности различных способов регулирования производительности турбомеханизмов,				
Расчет экономии электрической энергии, возможной при использовании для регулирования производительности турбомеханизмов асинхронных частотно-регулируемых электроприводов				8
Раздел 5 Методы расчета параметров и хараг оборудования элект			режимов э	лектро-
Тема 5.1 Определение аварийных режимов электрооборудования электрических сетей, методы расчета установившихся и ударных токов симметричных и несимметричных коротких замыканий в точках электрической сети удаленных от генераторов				8
Особенности расчета токов коротких замыканий в точках сети, близких к генераторам; расчет параметров схем замещения электрических сетей в режимах коротких замыканий				8
Типовые расчеты в электрических сетях (часть 2)				15
Раздел 6 Современные аппаратно-программ	ные (инст	рументальн	ые) средсті	ва ана-

Раздел 6 Современные аппаратно-программные (инструментальные) средства анализа режимов работы электрооборудования

	Виды учебной работы, включая самостоятельную работу обучающихся и трудо-			
	емкость (в часах)			
11	Контактная работа преподава-			CPC
Наименование разделов, тем и содержание ма-		с обучающи		
териала	Лекции	Семинар-	Лабора-	
		ские	торные	
		(практи-	занятия	
		ческие		
		занятия)		
Тема 6.1 Анализатор электропотребления AR6				
его функции и основные технические характе-				
ристики, структура программного обеспече-				
ния, методика практической работы с анализа-				
тором, представление результатов измерений;				
анализатор электрических сетей «Энергомони-				
тор», его функции и основные технические				
характеристики, структура программного				
обеспечения, методика практической работы с				
анализатором, представление результатов из-				
мерений				
Анализатор электропотребления AR6 его				
функции и основные технические характери-				
стики, структура программного обеспечения,				
методика практической работы с анализато-				
ром, представление результатов измерений;				
анализатор электрических сетей «Энергомо-				8
нитор», его функции и основные технические				J
характеристики, структура программного				
обеспечения, методика практической работы				
с анализатором, представление результатов				
измерений				
-				
Тема 6.2 Измеритель показателей качества				
электроэнергии «Ресурс- UF2m», его функции				
и основные технические характеристики,				
структура программного обеспечения, мето-				
дика практической работы с измерителем,				
представление результатов измерений; изме-				
рители сопротивлений электрических сетей и				
фазометры, их функции и основные техниче-				
ские характеристики				
ские лириктеристики				
:F F				

	Виды учебной работы, включая самос ятельную работу обучающихся и трудемкость (в часах)			
Наименование разделов, тем и содержание ма-	Контактная работа преподава- теля с обучающимися			CPC
териала	Лекции	Семинар-	Лабора-	
_		ские	торные	
		(практи-	занятия	
		ческие		
**		занятия)		
Измеритель показателей качества электро-				
энергии «Ресурс- UF2m», его функции и основ-				
ные технические характеристики, структура				
программного обеспечения, методика практи-				
ческой работы с измерителем, представление				8
результатов измерений; измерители сопро-				
тивлений электрических сетей и фазометры,				
их функции и основные технические характе-				
ристики				
Тема 6.3 Современные расходомеры				
Современные расходомеры				8
Практическое задание 4 .Изучение техниче-				
ских характеристик анализатора электро-				
потребления AR6 и исследование режимов				
электропотребления с использованием этого		1		
анализатора				
Практическое задание 5. Изучение техниче-				
ских характеристик измерителя показателей				
качества электрической энергии Pecypc-UF2 и		1		
исследование режимов электропотребления с		_		
использованием этого измерителя				
Практическое задание 6Изучение техниче-				
ских характеристик анализатора электро-				
потребления Энергомонитор и исследование		1		
режимов электропотребления с использова-				
нием этого анализатора				
Практическое задание 7. Изучение техниче-				
ских характеристик вольтамперфазометра.				
Парма $BA\Phi$ - A - 2 и измерителя параметров за-				
земляющих устройств MRU-200 и измерение		1		
характеристик электрических сетей этими				
приборами				

	Виды уче	бной работы	, включая с	амосто-
	ятельную	работу обуч	нающихся и	трудо-
	емкость (в часах)			
	Контакти	Контактная работа преподава-		CPC
Наименование разделов, тем и содержание ма-	теля	с обучающи	мися	
териала	Лекции	Семинар-	Лабора-	
		ские	торные	
		(практи-	занятия	
		ческие		
		занятия)		
ИТОГО	-	o		150
по дисциплине	6	8		158

^{*}реализуется в практической форме

6 Внеаудиторная самостоятельная работа обучающихся по дисциплине (модулю)

При планировании самостоятельной работы студенту рекомендуется руководствоваться следующим распределением часов на самостоятельную работу (таблица 4):

Таблица 4 – Рекомендуемое распределение часов на самостоятельную работу

Компоненты самостоятельной работы	Количество часов
Изучение теоретических разделов дисциплины	66
Подготовка к занятиям семинарского типа	62
Подготовка и оформление	30
Расчетно-графической работы	
	158

7 Оценочные средства для проведения текущего контроля и промежуточной аттестации обучающихся по дисциплине (модулю)

Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации представлен в Приложении 1.

Полный комплект контрольных заданий или иных материалов, необходимых для оценивания результатов обучения по дисциплине (модулю), практике хранится на кафедре-разработчике в бумажном и электронном виде.

8 Учебно-методическое и информационное обеспечение дисциплины (модуля)

8.1 Основная литература

- 1. Князевский, Б.А. Электроснабжение промышленных предприятий: Учебник для вузов /М.Г. Чиликин, Б.Ю. Липкин М.: Высш. шк., 1986.- 400 с.
- 2. Кудрин, Б.И. Электроснабжение: Учебник для вузов / Б.И. Кудрин М.: Академия, 2016. 352с.
- 3. Чиликин, М.Г. Общий курс электропривода: Учебник для вузов 6-е изд., доп. и перераб. / М.Г. Чиликин, А.С. Сандлер. М.: Энергоиздат, 1981. 576 с.
- 4. Сибикин Ю.Д. Электроснабжение: Учебное пособие для вузов / Ю.Д. Сибикин, М.Ю. Сибикин. М. РадиоСофт 2013–327 с.

- 5. Климова Г.Н. Энергосбережение на промышленных предприятиях [Электронный ресурс] : учебное пособие / Г.Н. Климова. Электрон.текстовые данные. Томск: Томский политехнический университет, 2014. 180 с. 978-5-4387-0380-8. // IPRbooks: электронно-библиотечная система. URL: http://www.iprbookshop.ru/34743.html (дата обращения 11.06. 2021) Режим доступа: по подписке.
- 6. Пилипенко Н.В. Энергосбережение и повышение энергетической эффективности инженерных систем и сетей [Электронный ресурс] : учебное пособие / Н.В. Пилипенко, И.А. Сиваков. Электрон.текстовые данные. СПб. : Университет ИТМО, 2013. 273 с. 2227-8397. // IPRbooks: электронно-библиотечная система. URL : http://www.iprbookshop.ru/65398.html (дата обращения 11.06. 2021) Режим доступа: по подписке.
- 7. Мещеряков В.Н. Энергосбережение в электроэнергетике и электроприводе [Электронный ресурс] : методические указания к практическим занятиям по дисциплине «Энергосберегающие технологии» для студентов направления подготовки 13.03.02 «Электроэнергетика и электротехника» / В.Н. Мещеряков, Л.Н. Языкова. Электрон.текстовые данные. Липецк: Липецкий государственный технический университет, ЭБС АСВ, 2017. 28 с. 2227-8397 // IPRbooks: электронно-библиотечная система. URL : https://www.iprbookshop.ru/74425.html (дата обращения 11.06. 2021) Режим доступа: по подписке.

8.2 Дополнительная литература

- 1. Чиликин, М.Г. Основы автоматизированного электропривода: Учебное пособие для вузов / М.Г. Чиликин, М.М. Соколов, В.М. Терехов, А.В. Шинянский. М. Энергия 1974-568c.
- 2. Онищенко, Г.Б. Электропривод турбомеханизмов / Г.Б. Онищенко, М.Г. Юньков. М. Энергия 1972-240 с.
- 3. Димов, Ю.В. Метрология, стандартизация и сертификация: Учебник для вузов / Ю.В. Димов. СПб. Питер 2013 496 с.
- 4. Комплексная автоматизация в энергосбережении : учеб.пособие / Р.С. Голов, В.Ю. Теплышев, А.Е. Сорокин, А.А. Шинелёв. М. : ИНФРА-М, 2018 312 с. // ZNANI-UM.COM : электронно-библиотечная система. URL: (дата обращения: 27.04.2021). Режим доступа: по подписке.
- 5. Антонов, С.Н. Проектирование электроэнергетических систем [Электронный ресурс]: учебное пособие / С.Н. Антонов, Е.В. Коноплев, П.В. Коноплев, А.В. Ивашина; Ставропольский гос. аграрный ун-т. Ставрополь, 2014. 104 с. // ZNANIUM.COM: электронно-библиотечная система. URL: http://znanium.com/catalog.php?bookinfo=514943 (дата обращения: 27.04.2021). Режим доступа: по подписке.

8.3 Методические указания для студентов по освоению дисциплины

- 1. Суздорф, В. И. , Гудим, А.С.Проблемы энергоэффективности в электротехнике и энергоэнергетике: учеб.пособие / В. И. Суздорф., А.С.Гудим— Комсомольск-на-Амуре: ГОУВПО «КнАГТУ», 2012. 112 с.
 - 8.4 Современные профессиональные базы данных и информационные справочные системы, используемые при осуществлении образовательного процесса по дисциплине

- 1. Электронно-библиотечная система ZNANIUM.COM http://www.znanium.com (дата обращения: 27.04.2021).
- 2. Электронно-библиотечная система IPRbooks http://www.iprbookshop.ru (дата обращения: 27.04.2021).

8.5 Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

Приводится список ссылок на Интернет-ресурсы

- 1) Библиотека РФФИ http://www.rfbr.ru/rffi/ru/library (дата обращения: 27.04.2021).
- 2) Научная электронная библиотека "КиберЛенинка" https://cyberleninka.ru/ (дата обращения: 27.04.2021).
- 3) Единое окно доступа к информационным ресурсам http://window.edu.ru/(дата обращения: 27.04.2021).
- 4) Частотно-регулируемый асинхронный электропривод курс лекций / http://www.electrolibrary.info/58-chastotno-reguliruemyy-asinhronnyy-elektroprivod-kurs-lekciy.html (дата обращения: 27.04.2021).
- 5) https://minenergo.gov.ru/node/444 (дата обращения: 27.04.2021).
- 6) Экспертный портал по энергосбережению https://gisee.ru/ (дата обращения: 27.04.2021).
- 7) Положение об организации в Министерстве промышленности и энергетике Российской Федерации работы по утверждению нормативов технологических потерь электроэнергии при ее передаче по электрическим сетям. Порядок расчета и обоснования нормативов технологических потерь электроэнергии при ее передаче по электриче-ским сетям. Утверждены Приказом Минпромэнерго РФ от 04.10.2005 N 267 "Об орга-низации в Министерстве Промышленности и энергетики Российской Федерации работы по утверждению нормативов технологических потерь электроэнергии при ее передаче по электрическим сетям".

https://minenergo.gov.ru/node/5195 (дата обращения: 27.04.2021).

8.6 Лицензионное и свободно распространяемое программное обеспечение, используемое при осуществлении образовательного процесса по лиспиплине

Таблица 5 – Перечень используемого программного обеспечения

	1 1	
Наименование ПО	Реквизиты / условия использования	
Microsoft Imagine Premium	Лицензионный договор АЭ223 №008/65 от 11.01.2019	
OpenOffice	Свободная лицензия, условия использования по ссылке:	
	https://www.openoffice.org/license.html	
математический редактор	Сервисный контракт # 2А1820328, лицензионный ключ,	
MathCad	договор № 106-АЭ120 от 27.11.2012	

9 Организационно-педагогические условия

Организация образовательного процесса регламентируется учебным планом и расписанием учебных занятий. Язык обучения (преподавания) - русский. Для всех видов аудиторных занятий академический час устанавливается продолжительностью 45 минут.

При формировании своей индивидуальной образовательной траектории обучающийся имеет право на перезачет соответствующих дисциплин и профессиональных модулей, освоенных в процессе предшествующего обучения, который освобождает обучающегося от необходимости их повторного освоения.

9.1 Образовательные технологии

Учебный процесс при преподавании курса основывается на использовании традиционных, инновационных и информационных образовательных технологий. Традиционные образовательные технологии представлены лекциями и семинарскими (практическими) занятиями. Инновационные образовательные технологии используются в виде широкого применения активных и интерактивных форм проведения занятий. Информационные образовательные технологии реализуются путем активизации самостоятельной работы студентов в информационной образовательной среде.

9.2 Занятия лекционного типа

Лекционный курс предполагает систематизированное изложение основных вопросов учебного плана.

На первой лекции лектор обязан предупредить студентов, применительно к какому базовому учебнику (учебникам, учебным пособиям) будет прочитан курс.

Лекционный курс должен давать наибольший объем информации и обеспечивать более глубокое понимание учебных вопросов при значительно меньшей затрате времени, чем это требуется большинству студентов на самостоятельное изучение материала.

9.3 Занятия семинарского типа

Семинарские занятия представляют собой детализацию лекционного теоретического материала, проводятся в целях закрепления курса и охватывают все основные разделы.

Основной формой проведения семинаров является обсуждение наиболее проблемных и сложных вопросов по отдельным темам, а также разбор примеров и ситуаций в аудиторных условиях. В обязанности преподавателя входят: оказание методической помощи и консультирование студентов по соответствующим темам курса.

Активность на семинарских занятиях оценивается по следующим критериям:

- ответы на вопросы, предлагаемые преподавателем;
- участие в дискуссиях;
- выполнение проектных и иных заданий;
- ассистирование преподавателю в проведении занятий.

Ответ должен быть аргументированным, развернутым, не односложным, содержать ссылки на источники.

Доклады и оппонирование докладов проверяют степень владения теоретическим материалом, а также корректность и строгость рассуждений.

Оценивание заданий, выполненных на семинарском занятии, входит в накопленную оценку.

9.4 Самостоятельная работа обучающихся по дисциплине (модулю)

Самостоятельная работа студентов — это процесс активного, целенаправленного приобретения студентом новых знаний, умений без непосредственного участия преподавателя, характеризующийся предметной направленностью, эффективным контролем и оценкой результатов деятельности обучающегося.

Цели самостоятельной работы:

- систематизация и закрепление полученных теоретических знаний и практических умений студентов;
 - углубление и расширение теоретических знаний;
- формирование умений использовать нормативную и справочную документацию, специальную литературу;
- развитие познавательных способностей, активности студентов, ответственности и организованности;
- формирование самостоятельности мышления, творческой инициативы, способностей к саморазвитию, самосовершенствованию и самореализации;
 - развитие исследовательских умений и академических навыков.

Самостоятельная работа может осуществляться индивидуально или группами студентов в зависимости от цели, объема, уровня сложности, конкретной тематики.

Технология организации самостоятельной работы студентов включает использование информационных и материально-технических ресурсов университета.

Контроль результатов внеаудиторной самостоятельной работы студентов может проходить в письменной, устной или смешанной форме.

Студенты должны подходить к самостоятельной работе как к наиважнейшему средству закрепления и развития теоретических знаний, выработке единства взглядов на отдельные вопросы курса, приобретения определенных навыков и использования профессиональной литературы.

9.5 Методические указания для обучающихся по освоению дисциплины

При изучении дисциплины обучающимся целесообразно выполнять следующие рекомендации:

- 1. Изучение учебной дисциплины должно вестись систематически.
- 2. После изучения какого-либо раздела по учебнику или конспектным материалам рекомендуется по памяти воспроизвести основные термины, определения, понятия раздела.
- 3. Особое внимание следует уделить выполнению отчетов по практическим занятиям и индивидуальным комплексным заданиям на самостоятельную работу.
- 4. Вся тематика вопросов, изучаемых самостоятельно, задается на лекциях преподавателем. Им же даются источники (в первую очередь вновь изданные в периодической научной литературе) для более детального понимания вопросов, озвученных на лекции.

При самостоятельной проработке курса обучающиеся должны:

- просматривать основные определения и факты;
- повторить законспектированный на лекционном занятии материал и дополнить его с учетом рекомендованной по данной теме литературы;
- изучить рекомендованную литературу, составлять тезисы, аннотации и конспекты наиболее важных моментов;
 - самостоятельно выполнять задания, аналогичные предлагаемым на занятиях;
 - использовать для самопроверки материалы фонда оценочных средств.

10 Описание материально-технического обеспечения, необходимого для осуществления образовательного процесса по дисциплине (модулю)

10.1 Учебно-лабораторное оборудование

Аудитория	Наименование аудитории (лаборатории)	Используемое оборудование
-----------	--------------------------------------	---------------------------

202/3	Лаборатория ЭВМ и вы-	персональные компьютеры
	числительных промышлен-	
	ных сетей	

10.2 Технические и электронные средства обучения

При проведении занятий используется аудитория, оборудованная проектором (стационарным или переносным) для отображения презентаций. Кроме того, при проведении лекций и практических занятий необходим компьютер с установленным на нем браузером и программным обеспечением для демонстрации презентаций.

Подготовлены демонстрационные материалы по расчету графиков нагрузок.

Лекционные занятия

Аудитории для лекционных занятий укомплектованы мебелью и техническими средствами обучения, служащими для представления учебной информации большой аудитории (наборы демонстрационного оборудования (проектор, экран, компьютер/ноутбук), учебно-наглядные пособия, тематические иллюстрации).

Для реализации дисциплины подготовлены следующие презентации:

1. Эффективность применения частотно-регулируемых электроприводов турбомеханизмов

Практические занятия Для практических занятий используется аудитория № 202/3, оснащенная оборудованием, указанным в табл. 6:

Самостоятельная работа.

Помещения для самостоятельной работы оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и доступом к электронной информационнообразовательной среде КнАГУ:

- читальный зал НТБ КнАГУ;
- компьютерные классы (ауд. 202 корпус № 3).

11 Иные сведения

Методические рекомендации по обучению лиц с ограниченными возможностями здоровья и инвалидов

Освоение дисциплины обучающимися с ограниченными возможностями здоровья может быть организовано как совместно с другими обучающимися, так и в отдельных группах. Предполагаются специальные условия для получения образования обучающимися с ограниченными возможностями здоровья.

Профессорско-педагогический состав знакомится с психолого-физиологическими особенностями обучающихся инвалидов и лиц с ограниченными возможностями здоровья, индивидуальными программами реабилитации инвалидов (при наличии). При необходимости осуществляется дополнительная поддержка преподавания тьюторами, психологами, социальными работниками, прошедшими подготовку ассистентами.

В соответствии с методическими рекомендациями Минобрнауки РФ (утв. 8 апреля 2014 г. N АК-44/05вн) в курсе предполагается использовать социально-активные и рефлексивные методы обучения, технологии социокультурной реабилитации с целью оказания помощи в установлении полноценных межличностных отношений с другими студентами, создании комфортного психологического климата в студенческой группе. Подбор и разработка учебных материалов производятся с учетом предоставления материала в раз-

личных формах: аудиальной, визуальной, с использованием специальных технических средств и информационных систем.

Освоение дисциплины лицами с OB3 осуществляется с использованием средств обучения общего и специального назначения (персонального и коллективного использования). Материально-техническое обеспечение предусматривает приспособление аудиторий к нуждам лиц с OB3.

Форма проведения аттестации для студентов-инвалидов устанавливается с учетом индивидуальных психофизических особенностей. Для студентов с ОВЗ предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной или электронной форме (для лиц с нарушениями опорнодвигательного аппарата);
- в печатной форме или электронной форме с увеличенным шрифтом и контрастностью (для лиц с нарушениями слуха, речи, зрения);
 - методом чтения ассистентом задания вслух (для лиц с нарушениями зрения).

Студентам с инвалидностью увеличивается время на подготовку ответов на контрольные вопросы. Для таких студентов предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге или набором ответов на компьютере (для лиц с нарушениями слуха, речи);
- выбором ответа из возможных вариантов с использованием услуг ассистента (для лиц с нарушениями опорно-двигательного аппарата);
 - устно (для лиц с нарушениями зрения, опорно-двигательного аппарата).

При необходимости для обучающихся с инвалидностью процедура оценивания результатов обучения может проводиться в несколько этапов.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине

«Методы и средства решения прикладных задач в энергетике и электротехнике»

Направление подготовки	13.04.02 Электроэнергетика и электротехника
Направленность (профиль) образовательной программы	Электропривод и автоматика
Квалификация выпускника	Магистр
Год начала подготовки (по учебному плану)	2021
Форма обучения	Заочная форма
Технология обучения	Традиционная

Курс	Семестр	Трудоемкость, з.е.
2	4	5

Вид промежуточной аттестации	Обеспечивающее подразделение
Экзамен	Кафедра «Электропривод и автоматизация промышленных установок»

1 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

Таблица 1 – Компетенции и индикаторы их достижения

Код и наименование компетенции	Индикаторы достижения	Планируемые результаты обучения по дисциплине			
	Общепрофессиональные				
ОПК-1 Способен формулировать цели и задачи исследования, выявлять приоритеты решения задач, выбирать критерии оценки	ОПК-1.1 Знает методы выбора и создания критериев оценки исследований ОПК-1.2 Умеет формулировать цели и задачи исследования, определять последовательность решения задач ОПК-1.3 Владеет навыками выбора критериев принятия решения	Знать методы выбора и создания критериев оценки исследований. Уметь формулировать цели и задачи исследования, определять последовательность решения задач. Владеть навыками выбора критериев принятия решения.			

Таблица 2 – Паспорт фонда оценочных средств

Контролируемые разделы (темы) дисциплины	Формируемая компетенция	Наименование оценочного средства	Показатели оценки
Раздел 1-6	ОПК-1	Вопросы к эк- заменй	Полнота и правильность ответов на вопросы
Разделы 1-3, 6	ОПК-1	Практические занятия	Полнота и правильность выполнения задания
Разделы 1,5	ОПК-1	Расчетно- графические работы	Полнота и правильность выполнения задания

2 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующие процесс формирования компетенций

Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, представлены в виде технологической карты дисциплины (таблица 3).

Таблица 3 – Технологическая карта

	Наименование оценочного средства	ценочного выполне- оценива-		Критерии оценивания		
	4 семестр					
	Промежуточная аттестация в форме «Экзамен»					
1	Практическое задание 1	в течение семестра	3 балла	3 балла — студент показал отличные знания, умения и навыки при решении профессиональных задач в рамках усвоенного учебного ма-		

	Наименование оценочного средства	Сроки выполне- ния	Шкала оценива- ния	Критерии оценивания
2	Практическое задание 2	в течение семестра	3 балла	териала. 2 балла – студент показал хорошие знания, умения и навыки при решении профессиональных задач в рамках усвоенного учебного материала.
3	Практическое задание 3	в течение семестра	3 балла	риала. 1 балл — студент показал удовлетворительное владение знаниями, умениями и навыками при решении профессиональных задач в рамках усвоенного учебного мате-
4	Практическое задание 4	в течение семестра	3 балла	риала. 0 баллов – студент продемонстри-
5	Практическое задание 5	в течение семестра	3 балла	ровал недостаточный уровень владения знаниями, умениями и навыками при решении професси-
6	Практическое задание 6	в течение семестра	3 балла	ональных задач в рамках усвоенного учебного
7	Практическое задание 7	в течение семестра	3 балла	
8	Расчетно-графическое задание	в течение семестра	9 баллов	9 баллов — студент показал отличные знания, умения и навыки при решении профессиональных задач в рамках усвоенного учебного материала. 6 баллов — студент показал хорошие знания, умения и навыки при решении профессиональных задач в рамках усвоенного учебного материала. 3 балла — студент показал удовлетворительное владение знаниями, умениями и навыками при решении профессиональных задач в рамках усвоенного учебного материала. 0 баллов — студент продемонстрировал недостаточный уровень владения знаниями, умениями и навыками при решении профессиональных задач в рамках усвоенного учебного
Теку 9	ущий контроль: Контрольный вопрос к экзамену	- Контроль- ный вопрос к экзамену	30 баллов 5 баллов	5 баллов — студент показал отличные знания в ответе на контрольный вопрос. 4 балла — студент показал хорошие знания в ответе на контрольный вопрос. 3 балла — студент показал удовлетворительные знания в ответе на

	Наименование оценочного средства	Сроки выполне- ния	Шкала оценива- ния	Критерии оценивания контрольный вопрос. 0 баллов — студент продемонстрировал недостаточный уровень владения знаниями в ответе на контрольный вопрос
				The state of the s
Промежуточная атте-			5	
тация				
ИТОГО:			35	_

Критерии оценки результатов обучения по дисциплине:

- 0 64 % от максимально возможной суммы баллов «неудовлетворительно» (недостаточный уровень для промежуточной аттестации по дисциплине);
- 65 74 % от максимально возможной суммы баллов «удовлетворительно» (пороговый (минимальный) уровень);
- 75 84 % от максимально возможной суммы баллов «хорошо» (средний уровень);
- 85-100~% от максимально возможной суммы баллов «отлично» (высокий (максимальный) уровень)
 - 1 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие процесс формирования компетенций в ходе освоения образовательной программы
 - 1.1 Задания для текущего контроля успеваемости

Практические задания

Практическое задание 1. Расчет нагрузок в электрических сетях

Цель задания: Научиться определять электрические нагрузки, создаваемые в электрических сетях различным электрооборудованием знание которых необходимо при проектировании систем электроснабжения.

Вопросы:

- 1. Что такое расчетные нагрузки?
- 2. С какой целью определяют расчетные нагрузки?
- 3. Для чего используются декодирующие устройства?
- 4. Перечислите методы определения расчетных нагрузок?
- 5. Какие бывают графики нагрузок?
- 6. Перечислите основные параметры графиков нагрузок?

Практическое задание 2. Расчет потерь электрической энергии в системах электроснабжения

Цель задания: Изучить методику расчета потерь мощности, электрической энергии и напряжения в электрических сетях

Вопросы:

- 1. С какой целью определяют потери электрической энергии в элементах электрических сетей?
- 2. Что считают условно-постоянными потерями электрической энергии?

- 3. Что считают нагрузочными потери электрической энергии?
- 4. Что считают метрологическими потерями электрической энергии?
- 5. Приведите типовую схему замещения для расчета электрических потерь в элементе системы электроснабжения?
- 6. Какие методы расчета потерь электрической энергии считаются наиболее точными?
- 7. Что считают нетехническими потерями электрической энергии?
- 8. Поясните возможные способы регулирования потерь напряжения в электрических сетях?

Практическое задание 3. Методики расчета энергетических и динамических показателей статических преобразователей энергии

Цель задания: Научиться определять энергетические и динамические показатели статических преобразователей электрической энергии, необходимые при разработке электроприволов.

- 1. Перечислите энергетические показатели статических преобразователей энергии?
- 2. Почему статические преобразователи энергии потребляют из питающей сети мощность искажения?
- 3. От чего зависит реактивная мощность, потребляемая из питающей сети статическим преобразователем?
- 4. Поясните общую универсальную методику расчета энергетических характеристик статических преобразователей энергии?
- 5. Какие инерционности влияют на быстродействие статических преобразователей электрической энергии?
- 6. Поясните оценку динамических показателей управляемых выпрямителей с использованием описывающих функций?
- 7. Поясните оценку динамических показателей управляемых выпрямителей с использованием непрерывной полезной составляющей выпрямленной ЭДС?
- 8. Поясните применение систем структурного моделирования для анализа электромагнитных процессов в схемах статических преобразователей энергии и расчета энергетических и динамических показателей этих преобразователей?

Практическое задание 4. Изучение технических характеристик анализатора электропотребления AR6 и исследование режимов электропотребления с использованием этого анализатора

- 1. Назначение анализатора электропотребления AR6?
- 2. Основные функции и характеристики анализатора электропотребления AR6?
- 3. Какие схемы измерения могут быть реализованы с использованием анализатора электропотребления AR6?
- 4. Назначение и основные функции программного обеспечения "Power Vision"?
- 5. В чем проявляются недостатки анализатора электропотребления AR6 при измерении показателей качества электрической энергии?
- 6. При каких температурах окружающего воздуха можно применять анализатора электропотребления AR6?

Практическое задание 5. Изучение технических характеристик измерителя показателей качества электрической энергии Pecypc-UF2 и исследование режимов электропотребления с использованием этого измерителя

- 1. Назначение измерителя показателей качества электрической энергии Pecypc-UF2?
- 2. Основные функции и характеристики измерителя показателей качества электрической энергии Pecypc-UF?
- 3. Какие схемы измерения могут быть реализованы с использованием измерителя показателей качества электрической энергии Pecypc-UF2?
- 4. Назначение и основные функции программного обеспечения UF2Plus?
- 5. В чем проявляется удобство применения измерителя показателей качества электриче-

ской энергии Pecypc-UF?

6. При каких температурах окружающего воздуха можно применять измеритель показателей качества электрической энергии Pecypc-UF?

Практическое задание 6. Изучение технических характеристик анализатора электропотребления Энергомонитор и исследование режимов электропотребления с использованием этого анализатора

- 1. Назначение анализатора электропотребления Энергомонитор?
- 2. Основные функции и характеристики анализатора электропотребления Энергомонитор?
- 3. Какие схемы измерения могут быть реализованы с использованием анализатора электропотребления Энергомонитор?
- 4. Назначение и основные функции программного обеспечения EMWorkNet?
- 5. В чем проявляется удобство применения анализатора электропотребления Энергомонитор при измерении показателей качества электрической энергии?
- 6. При каких температурах окружающего воздуха можно применять анализатор электропотребления Энергомонитор?

Практическое задание 7. Изучение технических характеристик вольтамперфазометра Парма ВАФ-А-2 и измерителя параметров заземляющих устройств MRU-200 и измерение характеристик электрических сетей этими приборами

- 1. Назначение вольтамперфазометра ВАФ-А -2?
- 2. Основные функции вольтамперфазометра ВАФ-А -2?
- 3. Назначение измерителя параметров заземляющих устройств MRU-200?
- 4. Основные функции измерителя параметров заземляющих устройств MRU-200?
- 5. В чем проявляется удобство применения вольтамперфазометра ВАФ-А -2?
- 6. При каких температурах окружающего воздуха можно применять вольтамперфазометр ВАФ-А -2?

Примеры задач для практических занятий

Задача 1

Три однофазных сварочных трансформатора с указанными ниже паспортными данными включены на линейные напряжения $U_{\pi}=380$ В. Определить условную трехфазную номинальную мощность $P_{\text{ном.у}}$, если $S_{I}=80$ кВА; $S_{2}=30$ кВА; $S_{3}=32$ кВА; $\Pi B_{1}=0.5$; $\Pi B_{2}=0.65$; $\Pi B_{3}=0.65$; $\Pi B_{3}=0.5$; $\Pi B_{3}=0.53$; $\Pi B_{3}=0.54$.

Решение

Номинальные приведенные мощности трансформаторов:

$$\begin{split} P_{_{HOM1}} &= \sqrt{\Pi B_1} \cos \varphi_1 = 80 \cdot \sqrt{0,5} \cdot 0, 5 = 28 \, \kappa Bm; \\ P_{_{HOM2}} &= \sqrt{\Pi B_2} \cos \varphi_2 = 30 \cdot \sqrt{0,65} \cdot 0, 53 = 13 \, \kappa Bm; \\ P_{_{HOM3}} &= \sqrt{\Pi B_3} \cos \varphi_3 = 32 \cdot \sqrt{0,65} \cdot 0, 54 = 14 \, \kappa Bm. \end{split}$$

Нагрузка наиболее нагруженной фазы при включении трансформаторов на соответствующие фазы:

$$P_a = (P_{ab} + P_{ca})/2 = (28 + 14)/2 = 21 \kappa Bm;$$

 $P_b = (P_{ab} + P_{bc})/2 = (28 + 13)/2 = 20,5 \kappa Bm;$
 $P_c = (P_{ac} + P_{bc})/2 = (14 + 13)/2 = 13,5 \kappa Bm.$

Следовательно, наиболее загруженной является фаза $P_a = P_{HOM, \phi} = 21 \ \kappa Bm$. Условная трехфазная номинальная мощность $P_{HOM, \gamma} = 3P_a = 3*21 = 63 \ \kappa BT$.

Полная нагрузка и ток при $\cos \varphi = 0.5$ для наибольшей нагрузки S_1 , составят $S_{\text{макс}} = P_{\text{ном.y}}/\cos \varphi = 63/0.5 = 126 \text{ kBA};$

$$I_{MAKC} = S_{MAKC} / (\sqrt{3} \cdot U_{\pi}) = 126 / (\sqrt{3} \cdot 380) = 190 \,\text{A}.$$

Задача 2

Определить максимальную нагрузку группы электроприемников длительного режима работы по следующим данным:

- a) 2*80=160 kBT; 2*50=100 kBT; $K_{H}=0.4$; $\cos \varphi=0.8$;
- δ) 1*40 = 40 kBT; 6*15 = 90 kBT; $K_{\text{H}} = 0.6$; $\cos \varphi = 0.8$;
- в) 14 двигателей разной мощности от 7 до 15 кВт общей мощностью 170 кВт, $K_{\text{M}} = 0.2$; $\cos \varphi = 0.65$.

Решение.

Общая установленная мощность

 $P_{HOM\Sigma} = 160 + 100 + 40 + 90 + 170 = 560 \text{ kBt}.$

Эффективное число электроприемников

 $n_{2d} = 2P_{HOM\Sigma}/P_{MAKCI} = 2*560/80 = 14.$

Средние активная и реактивная мощности нагрузки за смену:

 $P_{cM} = 0.4 * 260 + 0.6 * 130 + 0.2 * 170 = 216 \text{ kBT};$

 $Q_{CM} = 104*0.75 + 78*0.75 + 34*1.2 = 177 \text{ KBap.}$

Средний коэффициент использования

 $K_{u.cp} = P_{cM} / P_{HOM\Sigma} = 216/560 = 0.39.$

По найденным величинам $n_{9\phi\phi}=14$ и $K_{u.cp}=0.39$, используя типовые упорядоченные диаграммы, приведенные в справочной литературе, находим $k_{\text{макс}} = 1,31$. Тогда максимальные активная, реактивная и полная мощность соответственно будут

 $P_{\text{макс}} = 1,31*216 = 283 \text{ кВт};$

 $Q_{\text{MAKC}} = 1.0*177 = 177 \text{ kBAp};$ $S_{\text{MAKC}} = (283^2 + 177^2)^{0.5} = 334 \text{ kBA}.$

Задача 3

Завод сельскохозяйственного машиностроения при двухсменной работе выпускает 50 тысяч культиваторов в год. Определить годовой расход электроэнергии W_{rod} и максимальную мощность P_{makc} , потребляемые заводом для того, чтобы получить от энергосистемы технические условия на присоединение завода для обеспечения его электроснабжения.

Решение.

Для выполнения задания применяем метод расчета потребляемой электроэнергии по удельным нормам ее расхода на единицу выпускаемой продукции.

По справочнику находим удельную норму на изготовление культиваторов 900 кВт.ч/шт. Тогда годовой расход электроэнергии $W_{cod} = 900*50000 = 45$ млн.кВтч.

Расход электроэнергии на вспомогательные нужды и освещение принимаем равным 10% от производственных расходов, т. е. 4,5 млн.кВтч.

Таким образом, общий расход электроэнергии составит 49,5 млн.кВтч. Принимая при двухсменной работе завода число часов максимума нагрузки $T_{max} = 4500$ ч., определяем максимальную мощность (нагрузку): $P_{\textit{макс}} = W_{\textit{год}} / T_{\textit{макс}} = 49,5*$ $10^{6}/4500 = 11000 \text{ kBt}.$

Таким образом, исходными данными для присоединения завода к энергосистеме являются годовой расход электроэнергии $W_{rod} = 49,5$ млн.кВтч и максимальная нагрузка $P_{\text{макс}} = 11000 \text{ кВт.}$ Число, тип и мощность цеховых и заводской подстанций будут определяться значением предоставляемого энергосистемой напряжения и принятой схемой электроснабжения.

Задача 4

Определить потери активной энергии за год в трехфазной воздушной линии напряжением U=6 кВ, длиной l=8,2 км с сечением токопровода 95 мм², питающей промышленное предприятие с трехсменной работой. Годовой расход электроэнергии $W_{cod}=4980*~10^3$ кВтч при максимальной нагрузке $I_{Makc}=100$ А и коэффициенте мощности $\cos\varphi=0,8$.

Решение

По справочнику сопротивление провода сечением 95 мм 2 $r_0 = 0.33$ Ом/км. Общее активное сопротивление линии

$$R = r_0 l = 0.33*8.2 = 2.7 \text{ Om}.$$

Максимальная мощность нагрузки

$$P_{\text{MAKC}} = \sqrt{3}UI_{\text{MAKC}}\cos\varphi = \sqrt{3}\cdot 6\cdot 100\cdot 0,8 = 830 \text{ kBt}$$

Время использования максимума нагрузки

$$T_{\text{Make}} = T_{\text{H}} = W_{\text{foll}}/P_{\text{Make}} = 4980*10^{3}/830 = 6000 \text{ y}.$$

Из справочных данных имеем для $T_{\text{макс}} = 6000$ ч, $\cos \phi = 0.8$ время потерь $\tau = 4750$ ч. Потери электроэнергии

$$\Delta W=3~I^2$$
 макс R τ * $10^3=3*100^2*2,7*4750*10^3=389*10^3$ кВт.ч.

Расчетно-графическая работа

Типовые расчеты в электрических сетях (часть 1)

1. Построение графиков нагрузок и расчет их параметров

Цех промышленного предприятия получает питание на напряжении 35 кВ по кабельной линии. Известны показания счетчиков активной и реактивной энергии через каждые 30 минут (таблица 1.1). Счетчики установлены на вводе в цех. Требуется построить хронологический график активной, реактивной и полной нагрузок, полного тока фазы кабеля, упорядоченный график активной нагрузки; определить требуемое сечение фазы кабеля, предполагая, что кабель алюминиевый, прокладка кабеля в земле. Графики нагрузок строятся за одну рабочую смену (8 часов).

Таблина 1.1

	1 dOJIV	ща 1.1
t, ч	W_a ,к $B_T/$ ч	W _p , кВар/ч
0	15	10
0.5	18	12
1	22	15
1.5	40	33
2	60	52
2.5	67	56
3	77	60
3.5	85	70
4	102	90
4.5	110	95
5	115	100
5.5	130	105
6	143	108
6.5	150	140
7	160	150
7.5	166	155
8	170	160
8.5	173	162

2. Расчет нагрузок цеха предприятия

Цех предприятия работает в три смены. Продолжительность одной смены 8 часов. Загрузка силового электрооборудования по сменам одинаковая. Данные, необходимые для расчета и выбора элементов системы электроснабжения освещения цеха, приведены в таблице 2.1.

Таблица 2.1

№ варианта	1	2	3	4	5	6
$S(M^2)$	730	800	840	870	650	905
<i>E</i> (лк)	200	150	150	150	150	200
Тип ламп	ЛН	ЛН	ЛН	ЛН	ЛН	ЛН
Hp(M)	4	4	4,8	5	5	4,5
№ варианта	7	8	9	10	11	12
$S(M^2)$	1000	930	900	1300	1400	1350
<i>E</i> (лк)	100	100	100	200	200	100
Тип ламп	ЛН	ЛН	ЛН	ЛН	ЛН	ЛН
Hp(M)	5	4,8	4,8	4	4	5
№ варианта	13	14	15	16	17	18
$S(M^2)$	1500	1200	1200	1100	1300	1400
<i>E</i> (лк)	100	150	150	150	100	100
Тип ламп	ЛН	ЛН	ЛЛ	ЛЛ	ЛН	ЛН
Hp(M)	5	5	5	4,8	5	5
№ варианта	19	20	21	22	23	24
$S(M^2)$	1150	1250	1000	1100	950	800
Е (лк)	150	150	100	100	100	100
Тип ламп	ЛЛ	ЛЛ	ЛЛ	ЛЛ	ЛН	ЛН
Hp(M)	4	4	5	5	5	5

В таблице приняты обозначения: S - площадь цеха; E - требуемая освещенность рабочей поверхности цеха, Hp - высота подвеса светильников над рабочей поверхностью; ЛН - лампы накаливания; ЛЛ - люминесцентные лампы. Номинальное напряжение устройств освещения 0.22 kB.

Ниже приведены данные о паспортной мощности силовых электроприемников цеха, их продолжительности включения (ПВ%) и количестве электроприемников. Причем, количество электроприемников - первый сомножитель в данных, а их паспортная мощность - второй сомножитель. Если режим работы электроприемников длительный, то ПВ не указывается. Все электроприемники трехфазные, кроме указанных в задании, однофазных. Номинальное линейное напряжение всех силовых электроприемников, кроме дуговых печей, 0,38 кВ. Номинальное напряжение дуговых печей 6 кВ.

Вариант 1. Механосборочный цех машиностроительного завода.

Электродвигатели токарных и фрезерных станков мелкосерийного производства с нормальным режимом работы с $\Pi B=50\%:5\times10~\text{kBt};1\times40~\text{kBt};8\times4~\text{kBt}$. Электродвигатели зубофрезерных станков при тяжелом режиме работы: $5\times10~\text{kBt};3\times20~\text{kBt}$. Электродвигатели строгальных и расточных станков при тяжелом режиме работы с $\Pi B=70\%:2\times17~\text{kBt};1\times30~\text{kBt}$. Электропечи сопротивления с непрерывной загрузкой $6\times75~\text{kBt};3\times73~\text{kBt}$. Однофазные сварочные трансформаторы для однопостовой ручной сварки с $\Pi B=20\%:5\times20~\text{kBA};3\times11,4~\text{kBA}$. Электродвигатели вентиляторов: $2\times10~\text{kBt};4\times4,5~\text{kBt};5\times7,5$

кВт. Электродвигатели кран-балок и тельферов с ПВ=10%: $1 \times (2,2+1+4)$ кВт; $8 \times (0,6+1)$ кВт.

Вариант 2. Механосборочный цех машиностроительного завода.

Электродвигатели токарных и фрезерных станков крупносерийного производства с $\Pi B=55\%: 6\times 22 \text{ кBt}; 8\times 13 \text{ кBt}; 5\times 10 \text{ кBt}; 10\times 7,5 \text{ кBt}.$

Сварочные машины шовные с ПВ=20%: 5×133 кВА; 10×7.5 кВт.

Сварочные машины точечной сварки с $\Pi B=20\%$: 5×350 кBA; 3×600 кBA.

Электродвигатели мостовых кранов с ПВ=20%: $5 \times (16 + 11 + 2,2)$ кВт. Электродвигатели вентиляторов 7×13 кВт; 10×10 кВт. Однофазные машины точечной сварки 5×20 кВА. Печи сопротивления с периодической загрузкой: 5×58 кВт; $3 \times 14,6$ кВт.

Вариант 3. Кузнечно-прессовый цех машиностроительного завода.

Электродвигатели штамповочных прессов тяжелого режима работы :

 5×10 кВт; 2×22 кВт; 8×40 кВт. Электроприводы ковочных машин с особо тяжелым режимом работы: 5×40 кВт; 3×22 кВт. Индукционные печи низкой частоты непрерывного действия: 3×500 кВА; 4×750 кВА. Печи сопротивления с периодической загрузкой: $2 \times 108,2$ кВт; 3×600 кВт. Электродвигатели вентиляторов: 5×22 кВт; 2×13 кВт. Электродвигатели мостовых кранов с ПВ=25%: $4 \times (7,5+2,2+11)$ кВт.

Вариант 4. Литейный цех машиностроительного завода.

Дуговые сталеплавильные печи для фасонного литья с автоматическим регулированием электродов и механизированной загрузкой 5×630 кВА. Электродвигатели ленточных транспортеров $3\times7,5$ кВт; $1\times2,2$ кВт. Электродвигатели дымососов: $5\times7,5$ кВт; 2×13 кВт. Электродвигатели кран-балок с ПВ= $10\%: 2\times(2,2+1+4)$ кВт. Электродвигатели мостовых кранов с ПВ= $25\%: 4\times(7,5+2,2+11)$ кВт. Электродвигатели вентиляторов: $5\times7,5$ кВт; 4×4 кВт.

Электродвигатели компрессоров: 2×40 кВт; 1×22 кВт.

Вариант 5. Сварочный цех машиностроительного завода.

Трансформаторы однофазные для однопостовой ручной дуговой сварки с $\Pi B=20\%:10\times11,4$ кBA; $12\times19,4$ кBA. Трансформаторы для однопостовой ручной дуговой сварки с $\Pi B=20\%:20\times23$ кBA; 15×24 кBA; 5×40 кBA. Однофазные сварочные машины шовной сварки с $\Pi B=50\%:5\times31$ кBA; 6×75 кBA; 5×127 кBA. Сварочные машины шовной сварки с $\Pi B=50\%:2\times533$ кBA; 1×133 кBA. Сварочные машины точечной сварки с $\Pi B=20\%:5\times350$ кBA; 2×600 кBA. Электродвигатели вентиляторов и компрессоров: $20\times4,5$ кBT; 5×10 кBT; 3×17 кВт. Электродвигатели мостовых кранов с $\Pi B=20\%:4\times(7,5+2,2+11)$ кВт. Электродвигатели тельферов с $\Pi B=10\%:5\times(1+2,2)$ кВт.

Вариант 6. Механосборочный цех машиностроительного завода.

Электродвигатели токарных и фрезерных станков крупносерийного производства с ПВ=55%: $11 \times 22~$ кВт; $20 \times 13~$ кВт; $30 \times 10~$ кВт; $20 \times 7,5~$ кВт. Однофазные сварочные машины точечной сварки с ПВ=20%: $5 \times 14,8~$ кВА; $3 \times 50~$ кВА. Печи сопротивления с периодической загрузкой: $5 \times 108,2~$ кВт; $4 \times 14,6~$ кВт. Двигатели генераторов индукционных печей высокой частоты: $3 \times 250~$ кВт.

Печи сопротивления с непрерывной загрузкой: 3×102 кВт; 5×95 кВт; 1×120 кВт. Электродвигатели мостовых кранов с ПВ=20%: $2 \times (7,5+2,2+11)$ кВт; $1 \times (16+11+7,5)$ кВт. Электродвигатели тельферов с ПВ=10%: $8 \times (1+2,2)$ кВт. Электродвигатели вентиляторов $8 \times 7,5$ кВт.

Вариант 7. Участок прокатного цеха металлургического завода.

Электродвигатели индивидуального привода рольгангов с ΠB =40%: $80 \times 1,1$ кВт; $20 \times 1,12$ кВт; 20×2 кВт. Электроприводы толкателей сплавов с ΠB =40%: 4×11 кВт. Электроприводы ножниц холодной резки с ΠB =30%: 3×11 кВт; 2×22 кВт. Электроприводы ножниц блюмингов с ΠB =20%: 2×88 кВт. Электродвигатели крышек нагревательных колодцев $4 \times 2,2$ кВт; $4 \times 3,5$ кВт. Электродвигатели преобразователей частоты для рольгангов: 1×28 кВт; 1×45 кВт. Электродвигатели клещевых кранов прокатного цеха с ΠB =40%: $1 \times (2,2+7,5+11)$ кВт; $1 \times (7,5+11)$ хВт; $1 \times (7,5+11)$ хВт. Электродвигатели вентиляторов машинного зала $5 \times 3,5$ кВт; $5 \times 2,5$ кВт.

Вариант 8. Участок цеха огнеупорного завода.

Электродвигатели шаровых мельниц: 4×75 кВт; 5×90 кВт. Электродвигатели корпусных дробилок: 4×45 кВт; 2×55 кВт. Электродвигатели конвейеров мощностью до 10 кВт; 2×4 кВт; 3×7.5 кВт.

Электродвигатель конвейеров мощностью выше 10 кВт; 2×11 кВт; 4×15 кВт. Электродвигатели пластинчатых питателей $3 \times 5,5$ кВт; 2×4 кВт. Электродвигатели механизмов вращающихся печей $2 \times 18,5$ кВт. Туннельные печи сопротивления: 1×480 кВт; 1×620 кВт. Электродвигатели мостовых кранов с ПВ=20%: $4 \times (7,5+2,2+11)$ кВт. Электродвигатели дымососов печей 4×15 кВт; 2×11 кВт.

Вариант 9. Участок цеха огнеупорного завода.

Электродвигатели шаровых мельниц: 4×110 кВт; 3×90 кВт. Электродвигатели стержневых мельниц: 5×75 кВт; 6×45 кВт. Электродвигатели грохотов 3×11 кВт; $6 \times 18,5$ кВт; $5 \times 5,5$ кВт. Электродвигатели толкателей туннельных печей 4×11 кВт. Туннельные печи сопротивления: 4×480 кВт. Электродвигатели гидравлических прессов: 3×110 кВт; 2×90 кВт. Электродвигатели сушильных барабанов $4 \times 5,5$ кВт; 4×4 кВт. Электродвигатели конвейеров мощностью до 10 кВт; $5 \times 7,5$ кВт; 4×3 кВт. Электродвигатели конвейеров мощностью больше 10 кВт; 3×11 кВт; 2×15 кВт. Электродвигатели дымососов печей 2×15 кВт; 2×11 кВт. Электродвигатели мостовых кранов с ПВ= 20%: $5 \times 7,5$ кВт.

Вариант 10. Цех металлических изделий.

Электродвигатели автоматических линий для изготовления гаек и болтов: 10×5.5 кВт; 10×4 кВт в том числе и с ПВ=40%: 10×3 кВт; 10×2.2 кВт, а также с ПВ=20%: 10×4 кВт; 10×11 кВт. Электропечи сопротивления для термической обработки: 3×14.6 кВт; 2×58 кВт; 5×37.2 кВт; 3×73 кВт. Трансформаторы агрегатов гальванического покрытия: 8×5 кВА: 4×10 кВА.

Трансформаторы сварочных дуговых автоматов с ПВ=40%: 5×23 кВА; 7×32 кВА. Электродвигатели волочильных станков: $2 \times 5,5$ кВт; $4 \times 7,5$ кВт. Электродвигатели мостовых кранов с ПВ=20%: $4 \times (7,5+2,2+10)$ кВт. Электродвигатели вентиляторов: 5×3 кВт; $6 \times 5,5$ кВт. Электродвигатели тельферов $10 \times (1,1+2,2)$ кВт.

Вариант 11. Цех металлических изделий.

Электродвигатели автоматических линий для изготовления гаек и болтов: $20 \times 5,5$ кВт; 14×4 кВт, в том числе и с ПВ=40%: 8×3 кВт; $17 \times 2,2$ кВт, а также с ПВ=20%: $11 \times 7,5$ кВт; 14×10 кВт. Электродвигатели волочильных станов: 5×10 кВт; 11×3 кВт; $5 \times 2,2$ кВт. Электрические печи сопротивления для термической обработки: $2 \times 14,6$ кВт; $7 \times 37,2$ кВт. Однофазные трансформаторы для ручной дуговой сварки с ПВ=20%: $5 \times 11,4$ кВА; $5 \times 19,4$ кВА. Трансформаторы сварочных дуговых автоматов с ПВ=40%: 7×23 кВА; 8×32 кВА. Электродвигатели мостовых кранов с ПВ=20%: $4 \times (7,5+2,2+10)$ кВт. Электродви-

гатели вентиляторов: 8×3 кВт; 10×5.5 кВт. Электродвигатели тельферов: $10 \times (1.1 + 2.2)$ кВт.

Вариант 12. Участок мартеновского цеха металлургического завода.

Электродвигатели вентиляторов принудительного дутья 4×22 кВт. Электродвигатели дымососов 4×30 кВт. Электроприводы завалочных машин с ПВ=40%: $1 \times (37 + 37 + 22)$ кВт. Электропривод механизма качания кристаллизатора установки непрерывной разливки стали 20 кВт. Электроприводы тянущей клети установки непрерывной разливки стали 3×15 кВт. Электроприводы механизмов газовой резки слитков на установке непрерывной разливки стали: 3 + 15 кВт. Электродвигатели технологических вентиляторов установки непрерывной разливки стали: 5×11 кВт; $6 \times 4,5$ кВт. Электродвигатели вентиляторов машинного зала $5 \times 2,2$ кВт.

Вариант 13. Участок мартеновского цеха металлургического завода.

Электродвигатели вентиляторов принудительного дутья 5×30 кВт. Электродвигатели дымососов 5×37 кВт. Электроприводы завалочных машин с ПВ=40%: $2 \times (44 + 44 + 22)$ кВт. Электроприводы разливочных кранов с ПВ=20%: $2 \times (200 + 100 + 80)$ кВт. Электроприводы механизмов качания кристаллизаторов установок непрерывной разливки стали 2×20 кВт. Электроприводы тянущих клетей установок непрерывной разливки стали 6×15 кВт.

Электроприводы механизмов газовой резки слитков на установках непрерывной разливки стали 6×15 кВт. Электродвигатели технологических вентиляторов установок непрерывной разливки стали: 10×11 кВт; $12 \times 4,5$ кВт. Электродвигатели вентиляторов машинного зала $8 \times 2,2$ кВт.

Вариант 14. Участок прокатного цеха металлургического завода.

Электродвигатели индивидуального привода рольгангов с ПВ=40%: $50 \times 1,1$ кВт; $15 \times 1,12$ кВт; 15×2 кВт. Электроприводы толкателей слябов с ПВ=40%: 3×11 кВт. Электроприводы ножниц холодной резки с ПВ=30%: 2×11 кВт; 2×22 кВт. Электроприводы ножниц блюмингов с ПВ=20%: 2×88 кВт.

Электродвигатели крышек нагревательных колодцев: $3 \times 2,2$ кВт; $3 \times 3,5$ кВт. Электродвигатели преобразователей частоты для рольгангов: 1×28 кВт; 1×45 кВт. Электродвигатели клещевых кранов прокатного цеха с ПВ=40%: $1 \times (2,2+7,5+11)$ кВт; $1 \times (7,5+11+22)$ кВт. Электродвигатели вентиляторов машинного зала $4 \times 3,5$ кВт; $4 \times 2,5$ кВт.

Вариант 15. Цех горнообогатительного комбината.

Электродвигатели насосов производственного водоснабжения:

 10×75 кВт; 10×40 кВт. Электродвигатели производственных вентиляторов $5 \times 5,5$ кВт; 3×10 кВт. Электродвигатели двухдвигательных конусных дробилоккрупного дробления 2×75 кВт. Электродвигатели конусных дробилок срезного дробления 4×22 кВт. Электродвигатели конусных дробилок мелкого дробления 4×17 кВт. Электродвигатели шаровых мельниц: 4×22 кВт. Электродвигатели стержневых мельниц: 4×17 кВт. Электродвигатели грохотов: 16×10 кВт.

Электродвигатели ленточных конвейеров: 4×4 кВт; 4×13 кВт. Электродвигатели ленточных питателей: $12 \times 7,5$ кВт. Электродвигатели мостовых кранов с ПВ=20%: $2 \times (2,2+7,5+11)$ кВт.

Вариант 16. Цех горнообогатительного комбината.

Электродвигатели насосов производственного водоснабжения 8×75 кВт; 8×40 кВт. Электродвигатели производственных вентиляторов: $4 \times 5,5$ кВт; 3×10 кВт. Электродвигатели однодвигательных конусных дробилок крупного дробления 3×30 кВт. Электродвигатели конусных дробилок среднего дробления 3×22 кВт. Электродвигатели конусных дробилок мелкого дробления 3×17 кВт. Электродвигатели стержневых мельниц 3×17 кВт. Электродвигатели грохотов 16×10 кВт. Электродвигатели ленточных конвейеров: 3×4 кВт; 3×13 кВт. Электродвигатели ленточных питателей $9 \times 7,5$ кВт. Электродвигатели мостовых кранов с $\Pi B = 20\%$: $2 \times (2,2 + 7,5 + 11)$ кВт.

Вариант 17. Коксохимический цех металлургического комбината.

Электродвигатели транспортеров: 3×15 кВт; 4×11 кВт; $5 \times 7,5$ кВт. Электродвигатели молотковых дробилок 4×22 кВт. Электродвигатели ленточных питателей: 3×28 кВт; 4×15 кВт. Электроприводы электровозов тушильных вагонов 8×45 кВт. Электродвигатели коксовыталкивателей с ПВ=20%: 18×37 кВт. Электродвигатели углепогружателей с ПВ=20%: 6×28 кВт; 6×22 кВт. Электродвигатели штабеллеров с ПВ=20%: 6×28 кВт. Электродвигатели вагоноопрокидывателей с ПВ=20%: 2×37 кВт. Электродвигатели вагоноопрокидывателей с ПВ=20%: 2×37 кВт. Электродвигатели вентиляторов $10 \times 1,4$ кВт.

Вариант 18. Коксохимический цех металлургического комбината.

Электродвигатели транспортёров: 4×15 кВт; 5×11 кВт; $10 \times 7,5$ кВт. Электродвигатели молотковых дробилок : 6×22 кВт. Электродвигатели ленточных питателей: 4×28 кВт; 6×15 кВт. Электроприводы электровозов тушильных вагонов: 10×45 кВт. Электродвигатели коксовыталкивателей с ПВ=20 %: 20×37 кВт. Электродвигатели углепогружателей с ПВ=20 %: 8×28 кВт; 8×22 кВт. Электродвигатели штабеллеров с ПВ=20 %: 6×22 кВт. Электродвигатели кабестанов с ПВ=20 %: 2×37 кВт. Электродвигатели вагоноопрокидывателей с ПВ=20 %: 3×37 кВт. Электродвигатели вентиляторов: $12 \times 1,4$ кВт.

Вариант 19. Цех производства ацетатного шёлка.

Электродвигатели водяных насосов: 5×10 кВт; 6×17 кВт. Электродвигатели компрессоров: 2×40 кВт; 6×22 кВт. Электродвигатели мешалок растворителей ацетатного шёлка: 7×3 кВт; $10 \times 2,2$ кВт. Электродвигатели фильтр-прессов: 2×40 кВт. Электродвигатели прядильных машин ацетатного шёлка: 20×3 кВт; $100 \times 0,18$ кВт; $20 \times 1,1$ кВт. Электродвигатели перемоточных машин: $100 \times 0,37$ кВт. Электродвигатели ткацких станков: $20 \times 1,1$ кВт; 20×3 кВт. Электродвигатели сантехнических вентиляторов: 10×4 кВт; $5 \times 1,5$ кВт.

Вариант 20. Цех производства аиетатного шёлка.

Электродвигатели водяных насосов: 8×10 кВт; 7×17 кВт. Электродвигатели компрессоров: 3×40 кВт; 8×22 кВт. Электродвигатели мешалок растворителей ацетатного шёлка: 10×3 кВт; $12 \times 2,2$ кВт. Электродвигатели фильтр-прессов: 3×40 кВт. Электродвигатели прядильных машин ацетатного шёлка: 25×3 кВт; $125 \times 0,18$ кВт; $25 \times 1,1$ кВт. Электродвигатели перемоточных машин: $125 \times 0,37$ кВт. Электродвигатели ткацких станков: $25 \times 1,1$ кВт; 25×3 кВт. Электродвигатели сантехнических вентиляторов: 12×4 кВт; $6 \times 1,5$ кВт.

Вариант 21. Участок цеха шинного завода.

Электродвигатели резиносмесителей для приготовления резиновой смеси: $8 \times 7,5$ кВт; $8 \times 5,5$ кВт. Электродвигатели вальцов под резиносмесители: $8 \times 2,2$ кВт; $8 \times 1,5$ кВт. Подогреватели на вальцы: 8×5 кВт; 8×4 кВт. Электродвигатели шприц-машин протекторных агрегатов: $30 \times 2,2$ кВт; $25 \times 1,5$ кВт. Электродвигатели шприц-машин автокамерных агре-

гатов: $25 \times 1,5$ кВт; $14 \times 1,1$ кВт. Электродвигатели обкладочных каландр: $10 \times 2,2$ кВт; $5 \times 1,5$ кВт. Электродвигатели сборочных станков с ПВ=40 %: $5 \times 2,2$ кВт; 5×4 кВт. Вулканизаторы шин: 30×50 кВт; 20×12 кВт. Вулканизаторы автокамер: 30×40 кВт; 20×10 кВт. Электродвигатели насосов водоснабжения: 4×11 кВт. Электродвигатели сантехнических вентиляторов: $10 \times 2,2$ кВт. Электродвигатели транспортных систем: 5×3 кВт; 10×4 кВт.

Вариант 22. Участок цеха шинного завода.

Электродвигатели резиносмесителей для приготовления резиновой смеси: $9 \times 7,5$ кВт; $10 \times 5,5$ кВт. Электродвигатели вальцов под резиновые смесители: $9 \times 2,2$ кВт; $10 \times 1,5$ кВт. Подогреватели на вальцы: 10×8 кВт; 10×12 кВт.

Электродвигатели шприц-машин протекторных агрегатов: $50 \times 2,2$ кВт; $40 \times 1,5$ кВт. Электродвигатели шприц-машин автокамерных агрегатов: $40 \times 1,5$ кВт; $20 \times 1,1$ кВт. Электродвигатели обкладочных каландр: $15 \times 2,2$ кВт; $10 \times 1,5$ кВт.

Электродвигатели сборочных станков с ПВ=40 %: $10 \times 2,2$ кВт; 8×4 кВт. Вулканизаторы шин: 50×50 кВт; 40×20 кВт. Вулканизаторы автокамер: 50×40 кВт; 40×15 кВт. Электродвигатели насосов водоснабжения: 6×11 кВт. Электродвигатели сантехнических вентиляторов: $15 \times 2,2$ кВт. Электродвигатели транспортных систем: 6×3 кВт; 14×4 кВт.

Вариант 23. Сварочный цех машиностроительного завода.

Однофазные трансформаторы для однопостовой ручной дуговой сварки с ПВ=20 %: $20 \times 11,4 \text{ кВA}$; $18 \times 19,4 \text{ кВA}$. Трансформаторы для однопостовой ручной дуговой сварки с ПВ=20 %: $25 \times 23 \text{ кВA}$; $14 \times 24 \text{ кВA}$; $10 \times 40 \text{ кВA}$. Сварочные машины шовной сварки с ПВ=50 %: $3 \times 533 \text{ кВA}$; $1 \times 133 \text{ кВA}$. Сварочные машины точечной сварки с ПВ=20 %: $6 \times 350 \text{ кВA}$; $3 \times 600 \text{ кВA}$. Электродвигатели вентиляторов и компрессоров: $25 \times 4,5 \text{ кВт}$; $6 \times 10 \text{ кВт}$; $5 \times 17 \text{ кВт}$. Электродвигатели мостовых кранов с ПВ=20 %: $4 \times (7,5+2,2+11) \text{ кВт}$. Электродвигатели тельферов с ПВ=10 %: $5 \times (1+2,2) \text{ кВт}$.

Вариант 24. Кузнечно-прессовый цех машиностроительного завода.

Электродвигатели штамповочных прессов тяжёлого режима работы: 8×10 кВт; 5×22 кВт; 10×40 кВт. Электродвигатели ковочных машин с особо тяжёлым режимом работы: 9×40 кВт; 5×22 кВт. Индукционные печи низкой частоты непрерывного действия: 4×500 кВА; 5×750 кВА. Печи сопротивления периодической загрузкой: $3 \times 108,2$ кВт; 4×600 кВт. Электродвигатели вентиляторов: 7×22 кВт; 4×13 кВт. Электродвигатели мостовых кранов с Π B=25 %: $4 \times (7,5+22+11)$ кВт.

Необходимо:

- 1. Начертить упрощённую схему цеха (участка цеха) с указанием на ней скомпонованного в группы всего силового и осветительного оборудования, всех распределительных устройств высокого напряжения (РУ ВН) и распределительных устройств низкого напряжения (РУ НН).
- 2. Определить расчётную нагрузку от всех силовых и несиловых электроприёмников (ЭП) на вводе 6 кВ РУ ВН и на отходящих линиях 6 кВ РУ ВН.
- 3. Определить расчётную нагрузку от всех силовых и несиловых ЭП на отходящих линиях 0,38 кВ цеховых трансформаторных подстанций (ТП).
- 4. Определить расчётную нагрузку от всех силовых и несиловых ЭП на вводе 0,4 кВ групповых распределительных устройств низкого напряжения (ГРУ НН) и на отходящих линиях 0,4 кВ ГРУ НН.
- 5. Выбрать необходимое число и мощность трансформаторов цеховых ТП.

- 6. Выбрать необходимые сечения проводников линий на вводе в РУ ВН цеха, на вводах в цеховые ТП и на вводах в ГРУ НН.
- 7. Определить необходимые значения реактивной мощности компенсирующих устройств, подключаемых к сборным шинам 0,4 кВ ТП и обеспечивающих среднее значение коэффициента мощности на этих шинах, равное 0,9.
- 8. Определить среднее значение коэффициента мощности на входе РУ ВН без компенсирующих установок и с компенсирующими установками, включенными на сборные шины 0,4 кВ ТП.

Определение варианта. Вариант определяется на основании числа N, состоящего из предпоследней и последней цифр шифра зачетной книжки. Цифра старшего разряда N соответствует предпоследней цифре шифра зачетной книжки, цифра младшего разряда N соответствует последней цифре шифра. Вариант задачи рассчитывается в соответствии с приведенной ниже таблицей 2.2.

 Диапазон значений N
 Номер варианта задачи

 0...23
 N+1

 24...47
 N-23

 48...71
 N-47

 72...95
 N-71

 96...99
 N-95

Таблица 2.2

Типовые расчеты в электрических сетях (часть 2)

Расчет токов симметричного короткого замыкания

На рис. 1 приведена в однолинейном исполнении упрощенная часть электрической схемы энергоблока тепловой электростанции. На данном рисунке приняты указанные ниже обозначения и номинальные параметры электрооборудования. В качестве напряжений

 $C \bigcirc$ $I15 \kappa B \qquad JI$ TP1 $A \downarrow \overline{J}, 75 \kappa B$ J2 $CI \bigcirc A \qquad TP2$ $A \downarrow J$ $A \downarrow J$ A

везде даны усредненные номинальные значения.

C - энергосистема с номинальным напряжением $U_{ch} = 115 \ \mathrm{kB}$ бесконечной мощности.

 $C\Gamma$ - синхронный турбогенератор с номинальным напряжением U_{Hz} = 15,75 кВ и номинальной полной мощностью S_{Hz} = 200000 кВА.

TP1 - блочный трансформатор с номинальными параметрами: номинальное напряжение обмотки высокого напряжения $U_{\it вн1}$ = 115 кВ, номинальное напряжение обмотки низкого напряжения $U_{\it нн1}$ = 15,75 кВ, номинальная полная мощность $S_{\it mh1}$ = 250000 кВА, относительное напряжение опыта короткого замыкания $u_{\it kl}$ = 0,105.

TP2 - трехобмоточный трансформатор собственных нужд с номинальными параметрами: номинальное напряжение обмотки высокого напряжения $U_{\it GH2}=15,75~{\rm kB},$ номиналь-

Рис. 1. Часть схемы энерго-

ное напряжение каждой обмотки низкого напряжения $U_{nH2} = 6,3$ кВ, номинальная полная мощность $S_{mH2} = 20000$ кВА, относительные напряжения опыта короткого замыкания по всем обмоткам $u_{\kappa 2} = 0,085$.

- TP3 трехобмоточный резервный трансформатор собственных нужд с номи- нальными параметрами: номинальное напряжение обмотки высокого напряжения $U_{6H3}=115$ кВ, номинальное напряжение каждой обмотки низкого напряжения $U_{HH3}=6,3$ кВ, номинальная полная мощность $S_{mH3}=20000$ кВА, относительные напряжения опыта короткого замыкания по всем обмоткам $u_{\kappa3}=0,09$.
- TP4 трансформатор собственных нужд с номинальными параметрами: номинальное напряжение обмотки высокого напряжения $U_{\it вн4}=6,3$ кВ, номинальное напряжение обмотки низкого напряжения $U_{\it нн4}=0,4$ кВ, номинальная полная мощность $S_{\it mh4}=1000$ кВА, относительные напряжения опыта короткого замыкания $u_{\it к4}=0,08$.
- TP5 трансформатор собственных нужд с номинальными параметрами: номинальное напряжение обмотки высокого напряжения $U_{en5} = 6,3$ кВ, номинальное напряжение обмотки низкого напряжения $U_{hh5} = 0,4$ кВ, номинальная полная мощность $S_{mh5} = 630$ кВА, относительные напряжения опыта короткого замыкания $u_{\kappa5} = 0,055$.
- M1 асинхронный двигатель с полной номинальной мощностью $S_{\partial H}=1754~{\rm kBA}$ и номинальным напряжением $U_{H\partial I}=6,3~{\rm kB}.$
- M2 асинхронный двигатель с полной номинальной мощностью $S_{\partial H2}=3686$ кВА и номинальным напряжением $U_{H\partial 2}=6,3$ кВ.
- M3 асинхронный двигатель с полной номинальной мощностью $S_{\partial H3}=2029~{\rm kBA}$ и номинальным напряжением $U_{H\partial 3}=6,3~{\rm kB}.$
- M4 асинхронный двигатель с полной номинальной мощностью $S_{\partial H4}=2990~{\rm kBA}$ и номинальным напряжением $U_{H\partial 4}=6,3~{\rm kB}.$
- M5 асинхронный двигатель с полной номинальной мощностью $S_{\partial n5}=372~{\rm kBA}$ и номинальным напряжением $U_{n\partial 5}=0,4~{\rm kB}.$
- M6 асинхронный двигатель с полной номинальной мощностью $S_{\partial n6}=193~{\rm kBA}$ и номинальным напряжением $U_{n\partial 6}=0,4~{\rm kB}.$
- M7 асинхронный двигатель с полной номинальной мощностью $S_{\partial H7}=301~{\rm kBA}$ и номинальным напряжением $U_{H\partial 7}=0,4~{\rm kB}.$
- M8 асинхронный двигатель с полной номинальной мощностью $S_{\partial n8}=241~{\rm kBA}$ и номинальным напряжением $U_{n\partial 8}=0,4~{\rm kB}.$
- M9 асинхронный двигатель с полной номинальной мощностью $S_{\partial n^9}=136~{\rm kBA}$ и номинальным напряжением $U_{n\partial 9}=0,4~{\rm kB}.$
- M10 асинхронный двигатель с полной номинальной мощностью $S_{\partial H10} = 93$ кВА и номинальным напряжением $U_{H\partial 10} = 0.4$ кВ.
 - $\mathcal{I}1$ линия с полным сопротивлением z_1 = 0,25 Ом.
 - J2 линия с полным сопротивлением $z_2 = 0.08$ Ом.
 - J3 линия с полным сопротивлением $z_3 = 0.13$ Ом.
 - $\mathcal{J}4$ линия с полным сопротивлением $z_4 = 0.05$ Ом.
 - $\sqrt{15}$ линия с полным сопротивлением $z_5 = 0.03$ Ом.
 - $\mathcal{I}6$ линия с полным сопротивлением $z_6 = 0.07$ Ом.
 - $\sqrt{77}$ линия с полным сопротивлением $z_7 = 0.04$ Ом.
 - 78 линия с полным сопротивлением $z_8 = 0.02$ Ом.

 - $\Pi 10$ линия с полным сопротивлением z_{10} = 0,01 Ом.
 - $\Pi 11$ линия с полным сопротивлением $z_{11} = 0.015$ Ом. $\Pi 12$ линия с полным сопротивлением $z_{12} = 0.025$ Ом.
 - $\pi 113$ линия с полным сопротивлением $z_{13} = 0.05$ Ом.
- При этом под полным сопротивлением линии понимают модуль ее комплексного сопротивления.

Возможны два варианта питания электроприемников собственных нужд:

I вариант - от основного трансформатора собственных нужд TP2, при этом включены высоковольтные выключатели 2 и 3 и выключены 1 и 4;

II вариант - от резервного трансформатора собственных нужд TP3, при этом включены выключатели 1 и 4 и выключены 2 и 3.

Все остальные высоковольтные и низковольтные выключатели схемы (они не имеют на схеме позиционных обозначений) всегда включены.

Необходимо:

Определить действующее значение периодической составляющей трехфазного тока короткого замыкания и значение ударного тока короткого замыкания в указанном месте.

Токи КЗ находятся для проверки проводников и аппаратов на термическую и динамическую стойкость во время КЗ.

Выбор варианта. Если предпоследняя цифра шифра зачетной книжки: 0, 1, 2, 3, 4 - то берется I вариант питания.

Eсли предпоследняя цифра шифра зачетной книжки: 5, 6, 7, 8, 9 - то берется II вариант питания.

Место короткого замыкания определяется по приведенной ниже таблице в соответствии с последней цифрой шифра зачетной книжки.

Последняя цифра	Место короткого замыкания
0	на зажимах <i>M1</i>
1	в точке <i>К1</i>
2	на зажимах <i>М3</i>
3	в точке <i>К4</i>
4	на зажимах <i>M2</i>
5	на зажимах <i>М9</i>
6	на зажимах <i>M10</i>
7	в точке <i>К2</i>
8	на зажимах <i>М5</i>
9	в точке КЗ

3.2 Задания для промежуточной аттестации

Контрольные вопросы к экзамену

- 1. Понятие о системах электроснабжения и основные определения?
- 2. Особености инженерных расчетов в системах электроснабжения?
- 3. Понятие электрической нагрузки, графики электрических нагрузок и расчет их показателей?
- 4. Методики расчета установившихся расчетных нагрузок?
- 5. Методики расчета толчковых нагрузок?
- 6. Центры электрических нагрузок и определение их координат?
- 7. Г- образная схема замещения элемента систем электроснабжения и расчет ее параметров?
- 8. Методики расчета потерь мощности в элементе системы электроснабжения?

- 9. Методики расчета потерь электроэнергии в элементе системы электроснабжения?
- 10. Методика расчета потерь напряжения в элементе системы электроснабжения, продольная и поперечная компенсация потерь напряжения?
- 11. Общие сведения о коротких замыканиях, расчет токов при удаленных коротких замыканиях?
- 12. Расчет токов при близких коротких замыканиях?
- 13. Показатели качества электрической энергии и методики их определения?
- 14. Методика расчетов установившихся отклонений напряжения, используемые при сертификации электроэнергии?
- 15. Методики моделирования устройств преобразовательной техники с использованием пакета программ MATLAB?
- 16. Методики расчета динамических, статических и энергетических характеристик устройств преобразовательной техники?
- 17. Методика расчетов энергоэффективности различных способов регулирования производительности турбомеханизмов?
- 18. Назначение и основные функции современных микропроцессорных анализаторов энергопотребления?
- 19. Назначение и основные функции современных микропроцессорных анализаторов качества электроэнергии?
- 20. Назначение и основные функции современных микропроцессорных измерителей токов, напряжений и сдвига фаз?